In this paper, we propose TSception, a multi-scale convolutional neural network, to learn temporal dynamics and spatial asymmetry from electroencephalogram (EEG). TSception consists of dynamic temporal, asymmetric spatial, and high-level fusion layers, which learn discriminative representations in the time and channel dimensions simultaneously. The dynamic temporal layer consists of multi-scale 1D convolutional kernels whose lengths are related to the sampling rate of the EEG signal, which learns the dynamic temporal and frequency representations of EEG. The asymmetric spatial layer takes advantage of the asymmetric neural activations underlying emotional responses, learning the discriminative global and hemisphere representations. The learned spatial representations will be fused by a high-level fusion layer. Using more generalized cross-validation settings, the proposed method is evaluated on two publicly available datasets DEAP and MAHNOB-HCI. The performance of the proposed network is compared with prior reported methods such as SVM, KNN, FBFgMDM, FBTSC, Unsupervised learning, DeepConvNet, ShallowConvNet, and EEGNet. Our method achieves higher classification accuracies and F1 scores than the compared methods in most of the experiments. The proposed methods can be utilized in emotion regulation therapy for emotion recognition in the future. The source code can be found at https://github.com/yi-ding-cs/TSception


翻译:在本文中,我们提出Tsception,这是一个多尺度的进化神经网络,从电脑图(EEEG)中学习时间动态和空间不对称。Tsception由动态的时间、不对称的空间和高级聚变层组成,在时间和频道层面同时学习有区别的表述。动态时间层由多种规模的1D进化内核组成,其长度与EEEG信号的取样率有关,它了解EEEG的动态时间和频率表现。不对称的空间层利用了情感反应背后的不对称神经激活,学习了歧视性的全球和半球表现。学到的空间表现将由高层次的聚变层结合而成。使用更为普遍的交叉校准设置,对拟议的方法进行评价,以两种公开的数据集为DEAP和MAHNOB-HI。拟议网络的运行与以前报告的方法相比,例如SVM、KNNN、FBFBGMMMMMMMMM、FBTSC、不超级的神经动力学、深ConNet、Shaow ConNet 和EEEGNet MINet 和EEGENNet等情感实验中的拟议方法,可以在化方法可以在未来的分类。在比Cyalmlimalmexmexmlimal1和ENet中,在比较的Syalmexmalmalmalmalmalmalmalmmmmal上,可以找到找到找到的分类法中采用的方法,在使用。在将来的分类法中,在FCFCymex中,在比较的分类法中,可以采用的方法,在FCymexmexmexbismbsmex中采用的方法,在比较的分类中采用的方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员