We present a distributed algorithm that enables a group of robots to collaboratively optimize the parameters of a deep neural network model while communicating over a mesh network. Each robot only has access to its own data and maintains its own version of the neural network, but eventually learns a model that is as good as if it had been trained on all the data centrally. No robot sends raw data over the wireless network, preserving data privacy and ensuring efficient use of wireless bandwidth. At each iteration, each robot approximately optimizes an augmented Lagrangian function, then communicates the resulting weights to its neighbors, updates dual variables, and repeats. Eventually, all robots' local network weights reach a consensus. For convex objective functions, we prove this consensus is a global optimum. We compare our algorithm to two existing distributed deep neural network training algorithms in (i) an MNIST image classification task, (ii) a multi-robot implicit mapping task, and (iii) a multi-robot reinforcement learning task. In all of our experiments our method out performed baselines, and was able to achieve validation loss equivalent to centrally trained models. See \href{https://msl.stanford.edu/projects/dist_nn_train}{https://msl.stanford.edu/projects/dist\_nn\_train} for videos and a link to our GitHub repository.
翻译:我们提出一个分布式算法,使一组机器人能够在通过网状网络进行通信时,协作优化深神经网络模型的参数,同时通过网状网络进行通信。每个机器人只能获取自己的数据,并维持自己的神经网络,但最终会学习一个好于中央所有数据培训的模型。没有机器人在无线网络上发送原始数据,保护数据隐私,确保高效使用无线带宽。在每次迭代时,每个机器人都会优化扩增的拉格朗吉亚功能,然后将由此产生的重量告知邻居,更新双重变量和重复。最终,所有机器人的本地网络重量都能达成共识。对于 Convex 目标功能,我们证明这种共识是全球最佳的。我们将我们的算法与以下两个现有的分布式的深度神经网络培训算法进行了比较:(一) MNIST 图像分类任务,(二) 多机器人暗含的绘图任务,以及(三) 多机器人的强化存储存储器。在我们的所有实验中,我们的方法都完成了基线,并且能够实现与中央培训的模型相等的验证损失。 见:#hrendus/dus/dismadrobrus.