We study the problem of identifying the set of \emph{active} variables, termed in the literature as \emph{variable selection} or \emph{multiple hypothesis testing}, depending on the pursued criteria. For a general \emph{robust setting} of non-normal, possibly dependent observations and a generalized notion of \emph{active set}, we propose a procedure that is used simultaneously for the both tasks, variable selection and multiple testing. The procedure is based on the \emph{risk hull minimization} method, but can also be obtained as a result of an empirical Bayes approach or a penalization strategy. We address its quality via various criteria: the Hamming risk, FDR, FPR, FWER, NDR, FNR,and various \emph{multiple testing risks}, e.g., MTR=FDR+NDR; and discuss a weak optimality of our results. Finally, we introduce and study, for the first time, the \emph{uncertainty quantification problem} in the variable selection and multiple testing context in our robust setting.


翻译:我们根据所追求的标准,研究如何确定文献中称为 emph{ 可变选择} 或 emph{ 多重假设测试} 的一组变量的问题。 对于非正常的、可能依赖的观察和通用概念的不常规的、可能依赖的观察和多元的测试,我们提议一个同时用于两个任务、变量选择和多重测试的程序。该程序基于\ emph{ 风险船体最小化} 方法,但也可以通过经验性海湾方法或惩罚性战略获得。我们通过各种标准来处理其质量: 模拟风险、 FDR、 FPR、 FWER、 NDR、 FNRR, 和各种/emph{ 多重测试风险的通用概念,例如中期审查= FDR+NDR; 并讨论我们结果的微弱最佳性。 最后,我们第一次在可变的选择和多重测试背景下,介绍和研究 。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年5月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
7+阅读 · 2021年5月25日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2021年5月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员