In this paper, we consider the problem of bit allocation in Neural Video Compression (NVC). First, we reveal a fundamental relationship between bit allocation in NVC and Semi-Amortized Variational Inference (SAVI) with Group-of-Picture (GoP) level likelihood. Specifically, we show that SAVI with GoP-level likelihood is equivalent to optimal pixel-level bit allocation with precise rate \& quality dependency model. Based on this equivalence, we establish a new paradigm of bit allocation using SAVI. Different from previous bit allocation methods, our approach requires no empirical model and is thus optimal. Moreover, as the original SAVI using gradient ascent only applies to fully factorized latent, we extend the SAVI to dependent latent such as NVC by recursively applying back-propagating through gradient ascent. Finally, we propose a tractable approximation to this algorithm for practical implementation. Our algorithm can be applied to scenarios where performance outweights encoding speed, and serves as an empirical bound on the R-D performance of bit allocation. Experimental results show that our extension of SAVI outperforms original SAVI on dependent latent, and current state-of-the-art bit allocation algorithms still have a room of $\approx 0.5$ dB PSNR to improve compared with ours. Code is available in supplementary materials.


翻译:在本文中,我们考虑了神经视频压缩(NVC)中的比值分配问题。 首先,我们揭示了NVC和半模拟变异推断(SAVI)中比分分配与Picture集团(GOP)水平可能性之间的根本关系。 具体地说,我们显示,GoP一级可能性的SAVI相当于最佳像素水平比分配,具有精确的比值 ⁇ 质量依赖模式。 基于这一等值,我们用SAVI建立了新的比分分配模式。 与以往的比点分配方法不同,我们的方法不需要经验模型,因此是最佳的。 此外,由于最初使用梯度的SAVI(SVI)仅适用于充分分化的潜值(SAVI),我们把SAVI(SVI)扩大至像NVC(NVP)这样的潜在值。 最后,我们建议对这一算法进行一个可移植的近似近似近似近似近似值,以便实际执行。 我们的算法可以适用于业绩大于编码速度的情景, 并且作为对比分分配的R-D(R)的性)性表现的经验约束。 实验结果显示,我们用的是SAVI(RVI)的比RVI(RVI)RVI)的正值的比值的比值分配法比值的比值的比值。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员