In this work, we develop the Batch Belief Trees (BBT) algorithm for motion planning under motion and sensing uncertainties. The algorithm interleaves between batch sampling, building a graph of nominal trajectories in the state space, and searching over the graph to find belief space motion plans. By searching over the graph, BBT finds sophisticated plans that will visit (and revisit) information-rich regions to reduce uncertainty. One of the key benefits of this algorithm is the modified interplay between exploration and exploitation. Instead of an exhaustive search (exploitation) after one exploration step, the proposed algorithm uses batch samples to explore the state space and also does not require exhaustive search before the next iteration of batch sampling, which adds flexibility. The algorithm finds motion plans that converge to the optimal one as more samples are added to the graph. We test BBT in different planning environments. Our numerical investigation confirms that BBT finds non-trivial motion plans and is faster compared with previous similar methods.
翻译:在这项工作中,我们开发了在运动和感知不确定性下进行运动规划的批发信仰树算法(BBT)算法(BBT) 。算法在批量抽样、绘制国家空间名义轨迹图和搜索图表以寻找信仰空间运动计划之间互不相干。通过搜索图表,BBT找到了将访问(和重访)信息丰富区域以减少不确定性的复杂计划。这一算法的主要好处之一是探索与开发之间的相互作用有所改变。除了在一次勘探步骤之后进行详尽的搜索(开发)之外,拟议的算法还利用批量样本来探索国家空间,而且不需要在下一次批量抽样取样之前进行详尽的搜索,这就增加了灵活性。算法找到了随着更多的样本加入到图表中而与最佳的动作计划汇合起来的运动计划。我们在不同的规划环境中测试BBT。我们的数字调查证实,BT发现非三边运动计划,并且比以往的类似方法更快。