Domain adaptation (DA) arises as an important problem in statistical machine learning when the source data used to train a model is different from the target data used to test the model. Recent advances in DA have mainly been application-driven and have largely relied on the idea of a common subspace for source and target data. To understand the empirical successes and failures of DA methods, we propose a theoretical framework via structural causal models that enables analysis and comparison of the prediction performance of DA methods. This framework also allows us to itemize the assumptions needed for the DA methods to have a low target error. Additionally, with insights from our theory, we propose a new DA method called CIRM that outperforms existing DA methods when both the covariates and label distributions are perturbed in the target data. We complement the theoretical analysis with extensive simulations to show the necessity of the devised assumptions. Reproducible synthetic and real data experiments are also provided to illustrate the strengths and weaknesses of DA methods when parts of the assumptions in our theory are violated.
翻译:当用于培训模型的源数据不同于用于测试模型的目标数据时,域适应(DA)是统计机学习的一个重要问题,当用于培训模型的源数据与用于测试模型的源数据不同时,域适应(DA)是作为统计机学习中的一个重要问题。DA最近的进展主要是应用驱动的,主要依赖源数据和目标数据共同子空间的概念。为了了解DA方法的经验成败,我们提议通过结构因果模型建立一个理论框架,以便能够分析和比较DA方法的预测性能。这个框架还使我们能够逐项说明DA方法所需假设的低目标误差。此外,根据我们理论的洞察,我们提出了一种新的DA方法,称为CIRM,在目标数据中迭代和标签分布被渗透时超越了现有的DA方法。我们用广泛的模拟来补充理论分析,以显示设计假设的必要性。还提供了可复制的合成和真实的数据实验,以说明在我们理论部分假设被违反时,DA方法的优缺点。