Dialog systems must be capable of incorporating new skills via updates over time in order to reflect new use cases or deployment scenarios. Similarly, developers of such ML-driven systems need to be able to add new training data to an already-existing dataset to support these new skills. In intent classification systems, problems can arise if training data for a new skill's intent overlaps semantically with an already-existing intent. We call such cases collisions. This paper introduces the task of intent collision detection between multiple datasets for the purposes of growing a system's skillset. We introduce several methods for detecting collisions, and evaluate our methods on real datasets that exhibit collisions. To highlight the need for intent collision detection, we show that model performance suffers if new data is added in such a way that does not arbitrate colliding intents. Finally, we use collision detection to construct and benchmark a new dataset, Redwood, which is composed of 451 ntent categories from 13 original intent classification datasets, making it the largest publicly available intent classification benchmark.
翻译:同样,这种ML驱动系统的开发者需要能够将新的培训数据添加到已经存在的数据集中,以支持这些新的技能。在意图分类系统中,如果用于新技能目的的培训数据与已经存在的意图发生语言上的重叠,就会出现问题。我们称之为此类案件碰撞。本文件介绍了多个数据集之间故意碰撞探测的任务,目的是为了增加系统的技能。我们引入了几种探测碰撞的方法,并评估了显示碰撞情况的真实数据集的方法。为了突出探测意图碰撞的必要性,我们表明,如果添加新数据的方式不会对重叠意图进行仲裁,则模型性能会受到影响。最后,我们使用碰撞探测来构建和设定一个新的数据集,即红木,该数据集由13个原始意图分类数据集的451个节点组成,成为最大的公开目的分类基准。