Recently, several methods have been proposed for estimating the mutual information from sample data using deep neural networks. These estimators ar referred to as neural mutual information estimation (NMIE)s. NMIEs differ from other approaches as they are data-driven estimators. As such, they have the potential to perform well on a large class of capacity problems. In order to test the performance across various NMIEs, it is desirable to establish a benchmark encompassing the different challenges of capacity estimation. This is the objective of this paper. In particular, we consider three scenarios for benchmarking:i the classic AWGN channel, ii channels continuous inputs optical intensity and peak-power constrained AWGN channel iii channels with a discrete output, i.e., Poisson channel. We also consider the extension to the multi-terminal case with iv the AWGN and optical MAC models. We argue that benchmarking a certain NMIE across these four scenarios provides a substantive test of performance. In this paper we study the performance of mutual information neural estimator (MINE), smoothed mutual information lower-bound estimator (SMILE), and directed information neural estimator (DINE). and provide insights on the performance of other methods as well. To summarize our benchmarking results, MINE provides the most reliable performance.


翻译:最近,提出了利用深层神经网络估计样本数据中相互信息的几种方法。这些估计器被称为神经相互信息估计(NMIE)。NMIE与其他方法不同,因为它们是数据驱动的测算器。因此,它们有可能很好地处理大量的能力问题。为了测试各种国家监测仪的性能,有必要建立一个基准,包括能力估计的不同挑战。这是本文件的目标。我们特别考虑了基准设定的三种设想:AWGN经典频道,二是连续输入光学强度和峰值控制AWGN频道三频道,其输出是离散的,即Poisson频道。我们还考虑将多种情况推广到IVAWGN和光学MAC模型。我们认为,为某些国家监测仪制定基准提供了一种实质性的性能测试。在本文中,我们研究了相互信息测测线仪(MIE)的性能,平滑调了光学强度和峰值能力限制AWGN频道三频道,其输出是离散的,即Poisson频道。我们还考虑将多种情况推广到iv LA和光学MACMAC模型。我们的主要业绩分析结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月10日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员