Transfer Learning is an area of statistics and machine learning research that seeks answers to the following question: how do we build successful learning algorithms when the data available for training our model is qualitatively different from the data we hope the model will perform well on? In this thesis, we focus on a specific area of Transfer Learning called label shift, also known as quantification. In quantification, the aforementioned discrepancy is isolated to a shift in the distribution of the response variable. In such a setting, accurately inferring the response variable's new distribution is both an important estimation task in its own right and a crucial step for ensuring that the learning algorithm can adapt to the new data. We make two contributions to this field. First, we present a new procedure called SELSE which estimates the shift in the response variable's distribution. Second, we prove that SELSE is semiparametric efficient among a large family of quantification algorithms, i.e., SELSE's normalized error has the smallest possible asymptotic variance matrix compared to any other algorithm in that family. This family includes nearly all existing algorithms, including ACC/PACC quantifiers and maximum likelihood based quantifiers such as EMQ and MLLS. Empirical experiments reveal that SELSE is competitive with, and in many cases outperforms, existing state-of-the-art quantification methods, and that this improvement is especially large when the number of test samples is far greater than the number of train samples.


翻译:转移学习是统计和机器学习研究的一个领域,需要回答以下问题:当用于培训我们模型的数据与我们希望模型能够良好运行的数据质量不同时,我们如何建立成功的学习算法?在这个论文中,我们侧重于一个名为“标签变化”的转移学习的具体领域,也称为量化。在量化方面,上述差异被孤立到响应变量分布的转变。在这种环境下,准确推断响应变量的新分布是其自身的重要估计任务,也是确保学习算法能够适应新数据的关键步骤。我们为这个领域做出了两项贡献。首先,我们提出了一个名为“SELSIE”的新程序,用于估计响应变量分布的变化。第二,我们证明SELSI在大量量化算法中是半偏差效率的,即SELSI的归正错误与该家庭任何其他算法相比,其数量最小,与任何其他算法相比,这个家庭几乎包括所有现有的算法,包括AC/PACC量化算法的量化算法,以及以最大可能的方式对响应变量分布进行大幅的测试。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员