One of prospective ways to find new fast algorithms of matrix multiplication is to study algorithms admitting nontrivial symmetries. In the work possible algorithms for multiplication of $3\times3$ matrices, admitting a certain group $G$ isomorphic to $S_4\times S_3$, are investigated. It is shown that there exist no such algorithms of length $\leq23$. In the first part of the work, which is the content of the present article, we describe all orbits of length $\leq23$ of $G$ on the set of decomposable tensors in the space $M\otimes M\otimes M$, where $M=M_3({\mathbb C})$ is the space of complex $3\times3$ matrices. In the second part of the work this description will be used to prove that a short algorithm with the above-mentioned group does not exist.
翻译:找到新的矩阵乘法快速算法的可行方法之一是研究允许非三重对称的算法。在3\times3$矩阵乘法的可行算法中,对某一组异形G$到 $S_4\times S_3$进行调查。显示没有这种长度为$leq23$的算法。在本文内容的第一部分工作,我们描述了空间中可分解的发压器组所有长于$\leq23$$G$的轨道 $M\otimes M\otimes M$, $M=M=3(\mathbbC})$是复杂的 3\times3$矩阵的空间。在第二部分工作中,这一描述将用来证明不存在与上述组的短程算法。