Large language models (LLMs) are entering legal workflows, yet we lack a jurisdiction-specific framework to assess their baseline competence therein. We use India's public legal examinations as a transparent proxy. Our multi-year benchmark assembles objective screens from top national and state exams and evaluates open and frontier LLMs under real-world exam conditions. To probe beyond multiple-choice questions, we also include a lawyer-graded, paired-blinded study of long-form answers from the Supreme Court's Advocate-on-Record exam. This is, to our knowledge, the first exam-grounded, India-specific yardstick for LLM court-readiness released with datasets and protocols. Our work shows that while frontier systems consistently clear historical cutoffs and often match or exceed recent top-scorer bands on objective exams, none surpasses the human topper on long-form reasoning. Grader notes converge on three reliability failure modes: procedural or format compliance, authority or citation discipline, and forum-appropriate voice and structure. These findings delineate where LLMs can assist (checks, cross-statute consistency, statute and precedent lookups) and where human leadership remains essential: forum-specific drafting and filing, procedural and relief strategy, reconciling authorities and exceptions, and ethical, accountable judgment.
翻译:暂无翻译