In this paper, we establish the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix when the population covariance matrices are not uniformly bounded, which is a nontrivial extension of the Bai-Silverstein theorem (BST) (2004). The latter has strongly influenced the development of high-dimensional statistics, especially in applications of random matrix theory to statistics. However, the assumption of uniform boundedness of the population covariance matrices has seriously limited the applications of the BST. The aim of this paper is to remove the barriers for the applications of the BST. The new CLT, allows spiked eigenvalues to exist, which may be bounded or tend to infinity. An important feature of our result is that the roles of either spiked eigenvalues or the bulk eigenvalues predominate in the CLT, depending on which variance is nonnegligible in the summation of the variances. The CLT for LSS is then applied to compare four linear hypothesis tests: The Wilk's likelihood ratio test, the Lawly-Hotelling trace test, the Bartlett-Nanda-Pillai trace test, and Roy's largest root test. We also derive and analyze their power function under particular alternatives.


翻译:在本文中,我们为大维样本共变矩阵的线性光谱统计(LSS)设定了大维样本共变矩阵的中央限值(CLT),当人口共变矩阵没有统一界限时,这是Bai-Silverstein理论(BST)(2004年)的非三边延伸(2004年),后者对高维统计数据的发展产生了强烈的影响,特别是在随机矩阵理论对统计数据的应用方面。然而,人口共变矩阵统一界限的假设严重限制了BST的应用。本文的目的是消除应用BST的障碍。新的CLT允许超峰性电子元值存在,而后者可能受约束或趋于无限化。我们结果的一个重要特征是,高叶素价值或大宗电子值的作用在CLT中占主导地位,这取决于差异的对比不明显。随后,LSS的CLT用于比较四个线性假设测试:Wilk-N的概率比测试、BAR-BAL-HALT的测试和最大追踪功能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
0+阅读 · 2023年2月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员