From the perspective of data reduction, the notions of minimal sufficient and complete statistics together play an important role in determining optimal statistics (estimators). The classical notion of sufficiency and completeness are not adequate in many robust estimations that are based on different divergences. Recently, the notion of generalized sufficiency based on a generalized likelihood function was introduced in the literature. It is important to note that the concept of sufficiency alone does not necessarily produce optimal statistics (estimators). Thus, in line with the generalized sufficiency, we introduce a generalized notion of completeness with respect to a generalized likelihood function. We then characterize the family of probability distributions that possesses completeness with respect to the generalized likelihood function associated with the density power divergence (DPD). Moreover, we show that the family of distributions associated with the logarithmic density power divergence (LDPD) is not complete. Further, we extend the Lehmann-Scheff\'e theorem and the Basu's theorem for the generalized likelihood estimation. Subsequently, we obtain the generalized uniformly minimum variance unbiased estimator (UMVUE) for the $\mathcal{B^{(\alpha)}}$-family. Further, we derive an formula of the asymptotic expected deficiency (AED) that is used to compare the performance between the minimum density power divergence estimator (MDPDE) and the generalized UMVUE for $\mathcal{B^{(\alpha)}}$-family. Finally, we provide an application of the developed results in stress-strength reliability model.
翻译:暂无翻译