We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. The error bounds are explicitly characterized in terms of both the width and depth of the networks simultaneously. Namely, for $f\in C^s([0,1]^d)$, we show that deep ReLU networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ can achieve a non-asymptotic approximation rate of $\mathcal{O}(N^{-2(s-1)/d}L^{-2(s-1)/d})$ with respect to the $\mathcal{W}^{1,p}([0,1]^d)$ norm for $p\in[1,\infty)$. If either the ReLU function or its square is applied as activation functions to construct deep neural networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ to approximate $f\in C^s([0,1]^d)$, the non-asymptotic approximation rate is $\mathcal{O}(N^{-2(s-n)/d}L^{-2(s-n)/d})$ with respect to the $\mathcal{W}^{n,p}([0,1]^d)$ norm for $p\in[1,\infty)$.


翻译:我们在此工作中为在Sobolev 规范中测量的光功能建立深神经网络的深度神经网络近近结果, 其动因是最近利用深神经网络为部分差异方程开发了数字求解器, 使用深神经网络的深度和深度同时, 错误的界限以网络的宽度和深度来明确标出。 也就是说, 我们在这个工作中为在C__( 0. 1美元) 美元( 01, 1美元 美元) 美元( (N\log{ (N\log{ ) 美元) 和深度 $( 罗马) $( 罗马) 美元( N) 美元( N) 美元( N) 美元( N) 美元( N) 美元( N) 美元( N) 美元( 美元( N) 美元( ) 美元( 美元( ) 美元( ) 美元( 美元( ) 美元( ) 美元( ) 美元( f) 美元( 美元( ) 美元( ) 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元( 美元) 美元) 美元( ) 美元( ) ) 美元( ) 美元( ) 美元( 美元) ) 美元( 美元( 美元) 美元( 美元( 美元) ) 美元( 美元) 美元( 美元( 美元) ) ) ( 美元( ) 美元( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
44+阅读 · 2021年9月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
6+阅读 · 2018年10月3日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员