The purpose of this work is the development of space-time discretization schemes for phase-field optimal control problems. First, a time discretization of the forward problem is derived using a discontinuous Galerkin formulation. Here, a challenge is to include regularization terms and the crack irreversibility constraint. The optimal control setting is formulated by means of the Lagrangian approach from which the primal part, adjoint, tangent and adjoint Hessian are derived. Herein the overall Newton algorithm is based on a reduced approach by eliminating the state constraint. From the low-order discontinuous Galerkin discretization, adjoint time-stepping schemes are finally obtained.


翻译:这项工作的目的是为阶段-实地最佳控制问题制定时间分解计划。首先,用不连续的Galerkin配方得出远期问题的时间分解,这里的一个挑战是包括正规化条款和快速不可逆转限制。最佳控制设置是通过拉格朗加办法制定的,从中得出原始部分、联合、正切和联合的赫森。这里,总体牛顿算法的基础是通过消除国家限制而减少方法。从低顺序的连续加勒金分解中,最终获得了联合时间跨入计划。

0
下载
关闭预览

相关内容

【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
14+阅读 · 2021年5月21日
元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Top
微信扫码咨询专知VIP会员