The clustering of bounded data presents unique challenges in statistical analysis due to the constraints imposed on the data values. This paper introduces a novel method for model-based clustering specifically designed for bounded data. Building on the transformation-based approach to Gaussian mixture density estimation introduced by Scrucca (2019), we extend this framework to develop a probabilistic clustering algorithm for data with bounded support that allows for accurate clustering while respecting the natural bounds of the variables. In our proposal, a flexible range-power transformation is employed to map the data from its bounded domain to the unrestricted real space, hence enabling the estimation of Gaussian mixture models in the transformed space. This approach leads to improved cluster recovery and interpretation, especially for complex distributions within bounded domains. The performance of the proposed method is evaluated through real-world data applications involving both fully and partially bounded data, in both univariate and multivariate settings. The results demonstrate the effectiveness and advantages of our approach over traditional and advanced model-based clustering techniques that employ distributions with bounded support.
翻译:暂无翻译