In recent years, neuroscientists have been interested to the development of brain-computer interface (BCI) devices. Patients with motor disorders may benefit from BCIs as a means of communication and for the restoration of motor functions. Electroencephalography (EEG) is one of most used for evaluating the neuronal activity. In many computer vision applications, deep neural networks (DNN) show significant advantages. Towards to ultimate usage of DNN, we present here a shallow neural network that uses mainly two convolutional neural network (CNN) layers, with relatively few parameters and fast to learn spectral-temporal features from EEG. We compared this models to three other neural network models with different depths applied to a mental arithmetic task using eye-closed state adapted for patients suffering from motor disorders and a decline in visual functions. Experimental results showed that the shallow CNN model outperformed all the other models and achieved the highest classification accuracy of 90.68%. It's also more robust to deal with cross-subject classification issues: only 3% standard deviation of accuracy instead of 15.6% from conventional method.
翻译:近年来,神经科学家一直对开发大脑-计算机界面(BCI)设备感兴趣。运动障碍患者可能从BCIs获益,作为通信手段和恢复运动功能的手段。电子脑物理学(EEEG)是用来评估神经活动的最常用方法之一。在许多计算机视觉应用中,深神经网络(DNN)显示出巨大的优势。为了最终使用DNN,我们在这里展示了一个浅神经网络,它主要使用两个进化神经网络层,参数相对较少,而且能够迅速学习EEEG的光谱时空特征。我们将这一模型与其他三个具有不同深度的神经网络模型进行了比较,这些模型应用到一种精神算术任务上,使用了针对运动障碍患者和视觉功能下降的闭眼状态。实验结果表明,浅CNN模型超越了所有其他模型,达到了90.68%的最高分类精度。处理跨主题分类问题也比较有力:只有3%的标准偏差,而不是常规方法的15.6%。