The link between Gaussian random fields and Markov random fields is well established based on a stochastic partial differential equation in Euclidean spaces, where the Mat\'ern covariance functions are essential. However, the Mat\'ern covariance functions are not always positive definite on circles and spheres. In this manuscript, we focus on the extension of this link to circles, and show that the link between Gaussian random fields and Markov random fields on circles is valid based on the circular Mat\'ern covariance function instead. First, we show that this circular Mat\'ern function is the covariance of the stationary solution to the stochastic differential equation on the circle with a formally defined white noise space measure. Then, for the corresponding conditional autoregressive model, we derive a closed form formula for its covariance function. Together with a closed form formula for the circular Mat\'ern covariance function, the link between these two random fields can be established explicitly. Additionally, it is known that the estimator of the mean is not consistent on circles, we provide an equivalent Gaussian measure explanation for this non-ergodicity issue.


翻译:Gaussian 随机字段和 Markov 随机字段之间的链接是建立在 Euclidean 空间的随机部分差分方程式基础上的, 此处的 Mat\'ern 共变量函数是必不可少的。 但是, Mat\' ern 共变量函数在圆圈和球圈上并不总是确定是肯定的。 在此手稿中, 我们集中关注将这一链接扩展到圆圈, 并显示 Gausian 随机字段和 Markov 随机字段在圆圈上的联系基于循环 Mat\'ern 共变量函数而有效。 首先, 我们显示, 这个循环 Mat\' ern 函数是圆圈中静态的异差方方程式的共变量, 并有一个正式定义的白色噪声空间测量尺度。 然后, 对于相应的有条件的自动递增模式, 我们为它的共变量生成一个封闭的形式公式。 与 圆环 Mat\' ERn 共变量函数的封闭格式公式一起, 这两个随机字段之间的联系可以明确确定 。 此外, 我们知道, 平均值的缩略图的缩图说明在圆上是不连贯的。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
66+阅读 · 2021年6月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员