We consider budget feasible mechanisms for procurement auctions with additive valuation functions. For the divisible case, where agents can be allocated fractionally, there exists an optimal mechanism with approximation guarantee $e/(e-1)$ under the small bidder assumption. We study the divisible case without the small bidder assumption, but assume that the true costs of the agents are bounded by the budget. This setting lends itself to modeling economic situations in which the goods represent time and the agents' true costs are not necessarily small compared to the budget. Non-trivially, we give a mechanism with an approximation guarantee of 2.62, improving the optimal result of 3 for the indivisible case. Additionally, we give a lower bound on the approximation guarantee of 1.25. We then study the problem in more competitive markets and assume that the agents' value over cost efficiencies are bounded by some $\theta$. For $\theta \leq 2$, we give a mechanism with an approximation guarantee of 2 and a lower bound of 1.18. Finally, we extend our results to different agent types with concave additive valuation functions.
翻译:我们认为预算上可行的采购拍卖机制具有添加性估价功能。对于可以分期分配代理商的可分割性案例,我们有一个最佳机制,根据小投标人的假设,提供近似保证$e/(e-1)$(e-1)$(小投标人假设,我们研究可分割案例,但没有小投标人的假设,但假设代理商的真正成本受预算的约束。这种设定有利于模拟货物代表时间和代理商真实成本与预算相比不一定很小的经济形势。非三重性,我们提供近近似保证2.62的机制,改善3人对不可分割案例的最佳结果。此外,我们对近似保证1.25的制约较小。我们接着在更具竞争力的市场上研究这一问题,假设代理商的成本效率价值受约美元的约束。对于$theta leq 2,我们给一个机制以2和1.18的近似保证。最后,我们将我们的结果扩大到不同类型的代理商类型,并具有连锁的添加值估价功能。