We introduce a new method for releasing answers to statistical queries with differential privacy, based on the Johnson-Lindenstrauss lemma. The key idea is to randomly project the query answers to a lower dimensional space so that the distance between any two vectors of feasible query answers is preserved up to an additive error. Then we answer the projected queries using a simple noise-adding mechanism, and lift the answers up to the original dimension. Using this method, we give, for the first time, purely differentially private mechanisms with optimal worst case sample complexity under average error for answering a workload of $k$ queries over a universe of size $N$. As other applications, we give the first purely private efficient mechanisms with optimal sample complexity for computing the covariance of a bounded high-dimensional distribution, and for answering 2-way marginal queries. We also show that, up to the dependence on the error, a variant of our mechanism is nearly optimal for every given query workload.
翻译:我们根据强生-伦登斯特拉斯列姆马(Johnson-Lindenstrausles lemma) 引入了一种新的方法,以不同隐私的统计查询解答。 关键的想法是随机地将查询解答投射到一个低维空间, 从而将任何两种可行查询解答的矢量之间的距离保留到一个添加错误。 然后我们使用简单的噪音添加机制回答预测的询问, 并将解答解解解解答到最初的维度。 使用这种方法, 我们第一次在平均错误下给出纯粹的有差异的私人机制, 其最优的样本复杂度在平均错误下, 用来回答一个大小为N$的宇宙的查询工作量。 作为其他应用, 我们给出了第一个纯私有的有效机制, 其样本复杂度最优, 用于计算连接高维分布的共变异性, 以及回答双向边缘问题。 我们还表明, 在对错误的依赖下, 我们机制的变式对每个查询工作量几乎都是最佳的。