Author disambiguation arises when different authors share the same name, which is a critical task in digital libraries, such as DBLP, CiteULike, CiteSeerX, etc. While the state-of-the-art methods have developed various paper embedding-based methods performing in a top-down manner, they primarily focus on the ego-network of a target name and overlook the low-quality collaborative relations existed in the ego-network. Thus, these methods can be suboptimal for disambiguating authors. In this paper, we model the author disambiguation as a collaboration network reconstruction problem, and propose an incremental and unsupervised author disambiguation method, namely IUAD, which performs in a bottom-up manner. Initially, we build a stable collaboration network based on stable collaborative relations. To further improve the recall, we build a probabilistic generative model to reconstruct the complete collaboration network. In addition, for newly published papers, we can incrementally judge who publish them via only computing the posterior probabilities. We have conducted extensive experiments on a large-scale DBLP dataset to evaluate IUAD. The experimental results demonstrate that IUAD not only achieves the promising performance, but also outperforms comparable baselines significantly. Codes are available at https://github.com/papergitgit/IUAD.
翻译:当不同的作者共享相同的名字时,作者就会出现模糊不清的情况,这是数字图书馆,如DBLP、CiteUACT、CiteSeerX等的关键任务。尽管最先进的方法已经开发了各种基于纸张嵌入的方法,这些方法以自上而下的方式运作,但它们主要侧重于目标名称的自我网络,忽视了自我网络中存在的低质量合作关系。因此,这些方法对于含糊不清的作者来说可能是不理想的。在本文中,我们把作者的模糊化作为协作网络重建问题来做模型,并提出一种渐进的、不受监督的作者脱析方法,即IUAD,这种方法以自下而上的方式运行。最初,我们在一个稳定的合作关系基础上建立稳定的协作网络。为了进一步改进,我们建立了一个概率化的基因化模型来重建完整的协作网络。此外,对于新出版的论文,我们可以逐步判断谁只通过计算后方的概率来公布这些方法。我们在一个大规模、不易控制的 DBLP 上进行了广泛的实验,但是我们在一个大规模的 DUAD/AD 的实验性基准中也展示了IAD/AD 。