Model training algorithms which observe a small portion of the training set in each computational step are ubiquitous in practical machine learning, and include both stochastic and online optimization methods. In the vast majority of cases, such algorithms typically observe the training samples via the gradients of the cost functions the samples incur. Thus, these methods exploit are the \emph{slope} of the cost functions via their first-order approximations. To address limitations of gradient-based methods, such as sensitivity to step-size choice in the stochastic setting, or inability to exploit small function variability in the online setting, several streams of research attempt to exploit more information about the cost functions than just their gradients via the well-known proximal framework of optimization. However, implementing such methods in practice poses a challenge, since each iteration step boils down to computing a proximal operator, which may not be easy. In this work we provide efficient algorithms and corresponding implementations of proximal operators in order to make experimentation with incremental proximal optimization algorithms accessible to a larger audience of researchers and practitioners, and in particular to promote additional theoretical research into these methods by closing the gap between their theoretical description in research papers and their use in practice. The corresponding code is published at https://github.com/alexshtf/inc_prox_pt.


翻译:在绝大多数情况下,这种算法通常通过样品产生的成本函数梯度来观察培训样本。因此,这些方法的利用是成本函数的第一阶近似值计算出的成本函数。为了解决基于梯度的方法的局限性,例如,在实际的机器学习中,对分级选择的敏感度,或无法利用在线环境中的小函数变异性等,一些研究流试图利用更多关于成本函数的信息,而不是仅仅通过众所周知的精度优化框架来利用它们的成本函数梯度。然而,在实际中采用这种方法是一个挑战,因为每个分级步骤都通过第一阶近似值来计算一个准度操作器。在这项工作中,我们提供了高效的算法和对准度操作器的相应实施,以便进行实验,使更多的研究人员和从业者能够利用渐进式的准度优化算法,特别是通过众所周知的精度框架/实践,促进理论研究对这些方法进行更多的理论研究。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
On the effectiveness of persistent homology
Arxiv
0+阅读 · 2022年6月21日
Arxiv
0+阅读 · 2022年6月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员