Achieving transferability of targeted attacks is reputed to be remarkably difficult. Currently, state-of-the-art approaches are resource-intensive because they necessitate training model(s) for each target class with additional data. In our investigation, we find, however, that simple transferable attacks which require neither additional data nor model training can achieve surprisingly high targeted transferability. This insight has been overlooked until now, mainly due to the widespread practice of unreasonably restricting attack optimization to a limited number of iterations. In particular, we, for the first time, identify that a simple logit loss can yield competitive results with the state of the arts. Our analysis spans a variety of transfer settings, especially including three new, realistic settings: an ensemble transfer setting with little model similarity, a worse-case setting with low-ranked target classes, and also a real-world attack against the Google Cloud Vision API. Results in these new settings demonstrate that the commonly adopted, easy settings cannot fully reveal the actual properties of different attacks and may cause misleading comparisons. We also show the usefulness of the simple logit loss for generating targeted universal adversarial perturbations in a data-free and training-free manner. Overall, the aim of our analysis is to inspire a more meaningful evaluation on targeted transferability.


翻译:据认为,实现定向袭击的可转移性非常困难。目前,最先进的方法需要大量的资源,因为它们需要为每个目标类别制定培训模式,并需要更多数据。然而,在我们的调查中,我们发现,不需要额外数据或示范培训的简单可转移袭击可能达到令人惊讶的高度可转移性。这种洞察力迄今一直被忽视,主要原因是将攻击优化限制在数量有限的迭代上的做法非常普遍。特别是,我们第一次发现,简单登录丢失可产生与艺术状态相竞争的结果。我们的分析涉及各种转让环境,特别是包括三个新的、现实的环境:一个基本转移,没有模型相似性,没有更差的情景,没有低级目标类别,还有真实世界对谷歌云愿景API的攻击。这些新环境的结果表明,通常采用的简易环境无法充分揭示不同攻击的实际性质,并可能导致误导性比较。我们的分析还表明,简单的逻辑损失对于以更有意义的方式生成有针对性的全球对立对立透透性分析是有用的。一个更有意义的、更无目标的、更无目标性的分析。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
13+阅读 · 2019年4月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员