The modern open internet contains billions of public images of human faces across the web, especially on social media websites used by half the world's population. In this context, Face Recognition (FR) systems have the potential to match faces to specific names and identities, creating glaring privacy concerns. Adversarial attacks are a promising way to grant users privacy from FR systems by disrupting their capability to recognize faces. Yet, such attacks can be perceptible to human observers, especially under the more challenging black-box threat model. In the literature, the justification for the imperceptibility of such attacks hinges on bounding metrics such as $\ell_p$ norms. However, there is not much research on how these norms match up with human perception. Through examining and measuring both the effectiveness of recent black-box attacks in the face recognition setting and their corresponding human perceptibility through survey data, we demonstrate the trade-offs in perceptibility that occur as attacks become more aggressive. We also show how the $\ell_2$ norm and other metrics do not correlate with human perceptibility in a linear fashion, thus making these norms suboptimal at measuring adversarial attack perceptibility.


翻译:现代开放的互联网包含着数十亿个公众的网络面孔图像,特别是在世界上一半人口使用的社交媒体网站上。在这方面,脸部识别系统具有将脸部与具体姓名和身份相匹配的潜力,从而产生了明显的隐私问题。反向袭击通过干扰脸部识别能力,是给予用户隐私的极好的方法。然而,这种袭击对于人类观察者来说是显而易见的,特别是在更具挑战性的黑盒威胁模式下。在文献中,这种袭击的不可察觉性的理由取决于诸如$\ell_p$规范等约束性标准。然而,对于这些规范如何与人类认知相匹配,并没有进行多少研究。通过检查和测量最近对脸部识别环境中黑盒袭击的有效性及其通过调查数据对人的可感知性,我们展示了攻击越发激烈时发生的可感知性交易。我们还展示了美元=2美元的规范和其他衡量标准如何在直线方式上与人的可觉性不相关,从而使得这些规范在衡量对抗性攻击可觉性方面低于标准。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年9月20日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员