The integration of large language models (LLMs) into various pipelines is increasingly widespread, effectively automating many manual tasks and often surpassing human capabilities. Cybersecurity researchers and practitioners have recognised this potential. Thus, they are actively exploring its applications, given the vast volume of heterogeneous data that requires processing to identify anomalies, potential bypasses, attacks, and fraudulent incidents. On top of this, LLMs' advanced capabilities in generating functional code, comprehending code context, and summarising its operations can also be leveraged for reverse engineering and malware deobfuscation. To this end, we delve into the deobfuscation capabilities of state-of-the-art LLMs. Beyond merely discussing a hypothetical scenario, we evaluate four LLMs with real-world malicious scripts used in the notorious Emotet malware campaign. Our results indicate that while not absolutely accurate yet, some LLMs can efficiently deobfuscate such payloads. Thus, fine-tuning LLMs for this task can be a viable potential for future AI-powered threat intelligence pipelines in the fight against obfuscated malware.
翻译:暂无翻译