We present a general method to convert algorithms into faster algorithms for almost-regular input instances. Informally, an almost-regular input is an input in which the maximum degree is larger than the average degree by at most a constant factor. This family of inputs vastly generalizes several families of inputs for which we commonly have improved algorithms, including bounded-degree inputs and random inputs. It also generalizes families of inputs for which we don't usually have faster algorithms, including regular-inputs of arbitrarily high degree and very dense inputs. We apply our method to achieve breakthroughs in exact algorithms for several central NP-Complete problems including $k$-SAT, Graph Coloring, and Maximum Independent Set. Our main tool is the first algorithmic application of the relatively new Hypergraph Container Method (Saxton and Thomason 2015, Balogh, Morris and Samotij 2015). This recent breakthrough, which generalizes an earlier version for graphs (Kleitman and Winston 1982, Sapozhenko 2001), has been used extensively in recent years in extremal combinatorics. An important component of our work is the generalization of (hyper-)graph containers to Partition Containers.
翻译:我们提出了一个将算法转换成更快捷的算法的一般方法,用于几乎定期输入。 非正式地说, 几乎定期输入是一种输入, 其最大程度比平均程度要大, 最多是一个不变因素。 这种输入的组合非常笼统地概括了我们通常改进了算法的若干种输入, 包括约束度输入和随机输入。 它也概括了我们通常没有更快算法的输入组, 包括任意高度和非常密集输入的定期输入。 我们运用了我们的方法, 在一些中央NP- Complite问题精确算法方面实现突破, 包括$k$- SAT, 图表颜色和最大独立设置。 我们的主要工具是相对新的超光速集装箱方法( 萨克斯顿和托马斯2015年, 巴洛格、 莫里斯和萨莫提基 2015年) 的第一个算法应用。 最近这一突破将早期的图表( Kleitman 和 Winston 1982年, Sapozhenko (2001年) 的版本( ) 。 我们工作的一个重要部分是全面化的容器( ) 。