Automatic post-editing (APE) aims to reduce manual post-editing efforts by automatically correcting errors in machine-translated output. Due to the limited amount of human-annotated training data, data scarcity is one of the main challenges faced by all APE systems. To alleviate the lack of genuine training data, most of the current APE systems employ data augmentation methods to generate large-scale artificial corpora. In view of the importance of data augmentation in APE, we separately study the impact of the construction method of artificial corpora and artificial data domain on the performance of APE models. Moreover, the difficulty of APE varies between different machine translation (MT) systems. We study the outputs of the state-of-art APE model on a difficult APE dataset to analyze the problems in existing APE systems. Primarily, we find that 1) Artificial corpora with high-quality source text and machine-translated text more effectively improve the performance of APE models; 2) In-domain artificial training data can better improve the performance of APE models, while irrelevant out-of-domain data actually interfere with the model; 3) Existing APE model struggles with cases containing long source text or high-quality machine-translated text; 4) The state-of-art APE model works well on grammatical and semantic addition problems, but the output is prone to entity and semantic omission errors.
翻译:自动编辑后自动编辑(APE)的目的是通过自动纠正机器翻译输出中的错误来减少人工编辑后编辑工作,从而减少人工编辑后的工作。由于人文辅助培训数据数量有限,数据稀缺是所有辅助培训系统面临的主要挑战之一。为了减轻缺乏真正培训数据的情况,目前大多数辅助培训系统都采用数据增强方法来产生大规模人工体积。鉴于在辅助设计中增加数据的重要性,我们分别研究人工体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体外体