It is a long-standing question to discover causal relations among a set of variables in many empirical sciences. Recently, Reinforcement Learning (RL) has achieved promising results in causal discovery from observational data. However, searching the space of directed graphs and enforcing acyclicity by implicit penalties tend to be inefficient and restrict the existing RL-based method to small scale problems. In this work, we propose a novel RL-based approach for causal discovery, by incorporating RL into the ordering-based paradigm. Specifically, we formulate the ordering search problem as a multi-step Markov decision process, implement the ordering generating process with an encoder-decoder architecture, and finally use RL to optimize the proposed model based on the reward mechanisms designed for~each ordering. A generated ordering would then be processed using variable selection to obtain the final causal graph. We analyze the consistency and computational complexity of the proposed method, and empirically show that a pretrained model can be exploited to accelerate training. Experimental results on both synthetic and real data sets shows that the proposed method achieves a much improved performance over existing RL-based method.


翻译:在许多实证科学中,发现一系列变数之间的因果关系是一个长期存在的问题。最近,加强学习(RL)在观测数据的因果发现方面取得了令人乐观的结果。然而,通过隐性惩罚搜索定向图表的空间和强制实施循环方法往往效率低下,并将现有的基于RL的方法局限于小规模问题。在这项工作中,我们提出一个新的基于RL的因果发现方法,将RL纳入基于命令的模式。具体地说,我们把定购搜索问题作为一个多步骤的Markov决策程序,用编码脱coder结构实施定购生成程序,最后利用RL优化以设计给~each订购的奖励机制为基础的拟议模式。随后,将利用变量选择处理生成的定购,以获得最终因果图表。我们分析了拟议方法的一致性和计算复杂性,从经验上表明,可以利用预先训练的模型来加速培训。合成和真实数据集的实验结果显示,拟议的方法比现有的基于RL的方法取得了大大改进的业绩。

1
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
因果关联学习,Causal Relational Learning
专知会员服务
181+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
10+阅读 · 2021年11月3日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
5+阅读 · 2020年6月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
10+阅读 · 2021年11月3日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
5+阅读 · 2020年6月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员