Many wild species affected by human activities require multiple surveys with differing designs to capture behavioural response to wide ranging habitat conditions and map and quantify them. While data from for example intersecting but disparate fish surveys using different gear, are widely available, differences in design and methodology often limit their integration. Novel statistical approaches which can draw on observations from diverse sources could enhance our understanding of multiple species distributions simultaneously and thus provide vital evidence needed to conserve their populations and biodiversity at large. Using a novel Bayesian hierarchical binomial-lognormal hurdle modelling approach within the INLA-SPDE framework, we combined and analysed acoustic and bottom trawl survey data for herring, sprat and northeast Atlantic mackerel in the North Sea. These models were implemented using INLA-SPDE techniques. By accounting for gear-specific efficiencies across surveys in addition to increased spatial coverage, we gained larger statistical power with greatly minimised uncertainties in estimation. Our statistical approach provides a methodological development to improve the evidence base for multispecies assessment and marine ecosystem-based management. And on a broader scale, it could be readily applied where disparate biological surveys and sampling methods intersect, e.g. to provide information on biodiversity patterns using global datasets of species distributions.


翻译:许多受人类活动影响的野生物种需要开展多种调查,其设计不同,以获取对广泛生境条件的行为反应,并绘制地图和量化这些条件。虽然使用不同渔具的交叉但不同的鱼类调查数据广泛存在,但设计和方法上的差异往往限制其一体化。利用不同来源的观察,新颖的统计方法可以同时增进我们对多种物种分布的了解,从而提供保护其人口和整个生物多样性所需的重要证据。我们利用国际海洋生物协会-SPDE框架内的新颖的贝耶西亚等级二进制障碍建模方法,对北海的雌鸟、斯格拉特和东北大西洋大西洋竹鱼的声拖网和底拖网调查数据进行了合并和分析。这些模型是使用国际海洋生物调查和取样方法技术实施的。通过计算不同渔具的效率以及扩大空间覆盖面,我们获得了更大的统计能力,在估计中大大缩小了不确定性。我们的统计方法提供了一种方法发展,以改进多物种评估和基于海洋生态系统的管理的证据基础。在更广泛的范围内,可以在不同生物调查和采样方法下,例如,利用生物多样性分布的全球数据提供生物多样性模式的信息。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员