Aircraft performance models play a key role in airline operations, especially in planning a fuel-efficient flight. In practice, manufacturers provide guidelines which are slightly modified throughout the aircraft life cycle via the tuning of a single factor, enabling better fuel predictions. However this has limitations, in particular they do not reflect the evolution of each feature impacting the aircraft performance. Our goal here is to overcome this limitation. The key contribution of the present article is to foster the use of machine learning to leverage the massive amounts of data continuously recorded during flights performed by an aircraft and provide models reflecting its actual and individual performance. We illustrate our approach by focusing on the estimation of the drag and lift coefficients from recorded flight data. As these coefficients are not directly recorded, we resort to aerodynamics approximations. As a safety check, we provide bounds to assess the accuracy of both the aerodynamics approximation and the statistical performance of our approach. We provide numerical results on a collection of machine learning algorithms. We report excellent accuracy on real-life data and exhibit empirical evidence to support our modelling, in coherence with aerodynamics principles.


翻译:飞机性能模型在航空业务中发挥着关键作用,特别是在规划节能飞行方面。在实践中,制造商通过调整一个因素,提供在飞机整个寿命周期略微修改的准则,从而能够作出更好的燃料预测。然而,这有其局限性,特别是它们没有反映影响飞机性能的每个特征的演变情况。我们的目标是克服这一局限性。本条款的主要贡献是促进利用机器学习来利用飞机飞行期间连续记录的大量数据,并提供反映其实际和个人性能的模型。我们通过侧重于估计记录飞行数据的拖动系数和升动系数来说明我们的做法。由于这些系数没有直接记录,我们采用空气动力近距离法。作为安全检查,我们提供了评估空气动力学近似法和我们方法的统计性能的准确性的界限。我们提供了收集机器学习算法的数值结果。我们报告了真实生活数据的极准确性,并展示了经验证据来支持我们与空气动力学原则相一致的建模。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员