Context: In collaborative software development, the peer code review process proves beneficial only when the reviewers provide useful comments. Objective: This paper investigates the usefulness of Code Review Comments (CR comments) through textual feature-based and featureless approaches. Method: We select three available datasets from both open-source and commercial projects. Additionally, we introduce new features from software and non-software domains. Moreover, we experiment with the presence of jargon, voice, and codes in CR comments and classify the usefulness of CR comments through featurization, bag-of-words, and transfer learning techniques. Results: Our models outperform the baseline by achieving state-of-the-art performance. Furthermore, the result demonstrates that the commercial gigantic LLM, GPT-4o, or non-commercial naive featureless approach, Bag-of-Word with TF-IDF, is more effective for predicting the usefulness of CR comments. Conclusion: The significant improvement in predicting usefulness solely from CR comments escalates research on this task. Our analyses portray the similarities and differences of domains, projects, datasets, models, and features for predicting the usefulness of CR comments.
翻译:暂无翻译