We consider the extreme eigenvalues of the sample covariance matrix $Q=YY^*$ under the generalized elliptical model that $Y=\Sigma^{1/2}XD.$ Here $\Sigma$ is a bounded $p \times p$ positive definite deterministic matrix representing the population covariance structure, $X$ is a $p \times n$ random matrix containing either independent columns sampled from the unit sphere in $\mathbb{R}^p$ or i.i.d. centered entries with variance $n^{-1},$ and $D$ is a diagonal random matrix containing i.i.d. entries and independent of $X.$ Such a model finds important applications in statistics and machine learning. In this paper, assuming that $p$ and $n$ are comparably large, we prove that the extreme edge eigenvalues of $Q$ can have several types of distributions depending on $\Sigma$ and $D$ asymptotically. These distributions include: Gumbel, Fr\'echet, Weibull, Tracy-Widom, Gaussian and their mixtures. On the one hand, when the random variables in $D$ have unbounded support, the edge eigenvalues of $Q$ can have either Gumbel or Fr\'echet distribution depending on the tail decay property of $D.$ On the other hand, when the random variables in $D$ have bounded support, under some mild regularity assumptions on $\Sigma,$ the edge eigenvalues of $Q$ can exhibit Weibull, Tracy-Widom, Gaussian or their mixtures. Based on our theoretical results, we consider two important applications. First, we propose some statistics and procedure to detect and estimate the possible spikes for elliptically distributed data. Second, in the context of a factor model, by using the multiplier bootstrap procedure via selecting the weights in $D,$ we propose a new algorithm to infer and estimate the number of factors in the factor model. Numerical simulations also confirm the accuracy and powerfulness of our proposed methods and illustrate better performance compared to some existing methods in the literature.


翻译:我们认为,在通用的椭圆模型下,来自单位域的采样精度基质的极值为$YY=美元,根据这种模型,美元为美元Sigma=1/2}XD。 这里,美元Sgma$是一个约束的美元美元美元 确定性基数,代表人口变异结构,美元X$是一个美元确定性基数的绝对值 n美元随机基数,包含以$mathbb{R<unk> p$或i.d.为核心的精度基数。 以美元和美元为核心的精度基数, 美元和美元是包含i.i.d. 条目和不以美元为独立的正数的正数随机基数。 在本文中,美元和美元基数的极值基数中, 以美元为基数为基数, 以美元为基数的基数为基数 。</s>

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员