Respondent-Driven Sampling (RDS) is a variant of link-tracing sampling techniques that aim to recruit hard-to-reach populations by leveraging individuals' social relationships. As such, an RDS sample has a graphical component which represents a partially observed network of unknown structure. Moreover, it is common to observe homophily, or the tendency to form connections with individuals who share similar traits. Currently, there is a lack of principled guidance on multivariate modeling strategies for RDS to address homophilic covariates and the dependence between observations within the network. In this work, we propose a methodology for general regression techniques using RDS data. This is used to study the socio-demographic predictors of HIV treatment optimism (about the value of antiretroviral therapy) among gay, bisexual and other men who have sex with men, recruited into an RDS study in Montreal, Canada.
翻译:答卷人-搜索抽样(RDS)是旨在利用个人社会关系招募难以接触人口的链接抽样技术的变体,因此,RDS样本中含有一个图形部分,代表了部分观察的未知结构网络;此外,通常会观察到同质性,或倾向于与具有类似特征的个人建立联系;目前,对于RDS缺乏关于多式示范战略的原则性指导,以解决网络内同病共变和观察之间依赖性的问题。在这项工作中,我们提出了使用RDS数据进行一般回归技术的方法,用于研究男同性恋、双性恋和其他男男性行为者之间艾滋病毒治疗乐观(关于抗逆转录病毒疗法的价值)的社会-人口预测器,这些男同性恋、双性恋和其他男男性行为者被招募到加拿大蒙特利尔的RDS研究中。