In this paper, we analyze the convergence %semi-convergence properties of projected non-stationary block iterative methods (P-BIM) aiming to find a constrained solution to large linear, usually both noisy and ill-conditioned, systems of equations. We split the error of the $k$th iterate into noise error and iteration error, and consider each error separately. The iteration error is treated for a more general algorithm, also suited for solving split feasibility problems in Hilbert space. The results for P-BIM come out as a special case. The algorithmic step involves projecting onto closed convex sets. When these sets are polyhedral, and of finite dimension, it is shown that the algorithm converges linearly. We further derive an upper bound for the noise error of P-BIM. Based on this bound, we suggest a new strategy for choosing relaxation parameters, which assist in speeding up the reconstruction process and improving the quality of obtained images. The relaxation parameters may depend on the noise. The performance of the suggested strategy is shown by examples taken from the field of image reconstruction from projections.
翻译:在本文中,我们分析了预测的非静止区块迭代方法(P-BIM)的趋同性 %semmi-convergation 特性,这些预测的非静止区块迭代方法(P-BIM)旨在为大型线性(通常为噪音和条件差的)方程系统找到一个限制性的解决方案。我们将美元转折错误分成噪音错误和迭代错误,并分别考虑每个错误。迭代错误是用更一般的算法处理的,也适合于解决Hilbert空间的分解可行性问题。P-BIM的结果作为一个特例出来。P-BIM的结果包括投射到封闭的 convex组。当这些组是多面和有限尺寸时,算法显示这些算法是线性交汇的。我们进一步为P-BIM的噪音错误划出一条上界线。基于这个界限,我们建议了选择放松参数的新战略,这有助于加快重建进程和提高获得的图像的质量。放松参数可能取决于噪音。建议的战略的性能通过从图像重建领域从预测中提取的例子来显示。