Over the past decades, more and more methods gain a giant development due to the development of technology. Evolutionary Algorithms are widely used as a heuristic method. However, the budget of computation increases exponentially when the dimensions increase. In this paper, we will use the dimensionality reduction method Principal component analysis (PCA) to reduce the dimension during the iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is a good Evolutionary Algorithm that is presented as the numeric type and useful for different kinds of problems. We assess the performance of our new methods in terms of convergence rate on multi-modal problems from the Black-Box Optimization Benchmarking (BBOB) problem set and we also use the framework COmparing Continuous Optimizers (COCO) to see how the new method going and compare it to the other algorithms.
翻译:在过去几十年中,由于技术的发展,越来越多的方法获得了巨大的发展。进化算法被广泛用作一种累进法方法。然而,当尺寸增加时,计算预算会成倍增长。在本文件中,我们将使用减少维度方法主要组成部分分析(PCA)来减少共变矩阵适应进化战略迭代期间的维度,这是一种良好的进化算法,作为数字类型提出,对不同种类的问题有用。我们评估了我们新的方法在从黑-Box最佳化基准设定(BBOB)问题到多模式问题的趋同率方面的表现,我们还将使用COMPL框架来研究新的方法如何发展,并与其他算法进行比较。