Over the past decades, more and more methods gain a giant development due to the development of technology. Evolutionary Algorithms are widely used as a heuristic method. However, the budget of computation increases exponentially when the dimensions increase. In this paper, we will use the dimensionality reduction method Principal component analysis (PCA) to reduce the dimension during the iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is a good Evolutionary Algorithm that is presented as the numeric type and useful for different kinds of problems. We assess the performance of our new methods in terms of convergence rate on multi-modal problems from the Black-Box Optimization Benchmarking (BBOB) problem set and we also use the framework COmparing Continuous Optimizers (COCO) to see how the new method going and compare it to the other algorithms.


翻译:在过去几十年中,由于技术的发展,越来越多的方法获得了巨大的发展。进化算法被广泛用作一种累进法方法。然而,当尺寸增加时,计算预算会成倍增长。在本文件中,我们将使用减少维度方法主要组成部分分析(PCA)来减少共变矩阵适应进化战略迭代期间的维度,这是一种良好的进化算法,作为数字类型提出,对不同种类的问题有用。我们评估了我们新的方法在从黑-Box最佳化基准设定(BBOB)问题到多模式问题的趋同率方面的表现,我们还将使用COMPL框架来研究新的方法如何发展,并与其他算法进行比较。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员