Neural network-based semantic segmentation has achieved remarkable results when large amounts of annotated data are available, that is, in the supervised case. However, such data is expensive to collect and so methods have been developed to adapt models trained on related, often synthetic data for which labels are readily available. Current adaptation approaches do not consider the dependence of the generalization/transferability of these models on network architecture. In this paper, we perform neural architecture search (NAS) to provide architecture-level perspective and analysis for domain adaptation. We identify the optimization gap that exists when searching architectures for unsupervised domain adaptation which makes this NAS problem uniquely difficult. We propose bridging this gap by using maximum mean discrepancy and regional weighted entropy to estimate the accuracy metric. Experimental results on several widely adopted benchmarks show that our proposed AutoAdapt framework indeed discovers architectures that improve the performance of a number of existing adaptation techniques.


翻译:当有大量附加说明的数据,也就是说,在受监督的情况下,基于神经网络的语义分解已经取得了显著成果,但这些数据收集费用昂贵,因此开发了各种方法,以调整经过相关、往往是合成数据培训的模型,这些模型的标签很容易获得。目前的适应方法并不考虑这些模型在网络结构上的通用/可转让性。在本文件中,我们进行神经结构搜索,为领域适应提供结构层面的视角和分析。我们找出了在寻找非受监督域适应结构时存在的优化差距,这种结构使得NAS问题特别难以解决。我们提议通过使用最大平均值差异和区域加权加权变异来缩小这一差距,以估计准确度指标。若干广泛采用的基准的实验结果表明,我们提议的AutAdapt框架确实发现了一些改进现有适应技术绩效的结构。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员