We present the Open Predicate Query Language (OPQL); a method for constructing a virtual KB (VKB) trained entirely from text. Large Knowledge Bases (KBs) are indispensable for a wide-range of industry applications such as question answering and recommendation. Typically, KBs encode world knowledge in a structured, readily accessible form derived from laborious human annotation efforts. Unfortunately, while they are extremely high precision, KBs are inevitably highly incomplete and automated methods for enriching them are far too inaccurate. Instead, OPQL constructs a VKB by encoding and indexing a set of relation mentions in a way that naturally enables reasoning and can be trained without any structured supervision. We demonstrate that OPQL outperforms prior VKB methods on two different KB reasoning tasks and, additionally, can be used as an external memory integrated into a language model (OPQL-LM) leading to improvements on two open-domain question answering tasks.
翻译:我们展示了开放预科查询语言(OPQL); 一种完全用文本来构建虚拟KB(VKB)的方法。 大型知识库(KB)对于诸如问答和建议等广泛的行业应用必不可少。 通常, KBs 将世界知识以结构化的、易于获取的形式编码, 其形式来自艰苦的人类笔记努力。 不幸的是, KBs虽然非常精确, 却不可避免地高度不完整, 用来丰富这些语言的自动化方法也太不准确。 相反, OPQL 通过对一组关系进行编码和索引化来构建一个 VKB, 其方式自然地允许推理, 并且可以在没有任何结构性监督的情况下接受培训。 我们证明, OPQL 在两种不同的KB推理任务上超越了先前的VKB方法, 并且可以用作外部记忆, 融入一种语言模型( OPQL-LM), 从而改进了两个开放式问题解答任务。