Domain generalization (DG) aims to learn from multiple known source domains a model that can generalize well to unknown target domains. The existing DG methods usually rely on shared multi-source data fusion for generalizable model training. However, tremendous data is distributed across lots of places nowadays that can not be shared due to privacy policies, especially in some crucial areas like finance and medical care. A dilemma is thus raised between real-world data privacy protection and simultaneous multi-source semantic learning with the shared data. In this paper, we investigate a separated domain generalization task with separated source datasets that can only be used locally, which is vital for real-world privacy protection. We propose a novel solution called Collaborative Semantic Aggregation and Calibration (CSAC) to enable this challenging task. To fully absorb multi-source semantic information while avoiding unsafe data fusion, we first conduct data-free semantic aggregation by fusing the models trained on the separated domains layer-by-layer. To address semantic dislocation caused by domain shift, we further design cross-layer semantic calibration with an attention mechanism to align each semantic level and enhance domain invariance. We unify multi-source semantic learning and alignment in a collaborative way by repeating the semantic aggregation and calibration alternately, keeping each dataset localized, and privacy is thus carefully protected. Extensive experiments show the significant performance of our method in addressing this challenging task, which is even comparable to the previous DG methods with shared data.


翻译:域常规化 (DG) 旨在从多个已知源域中学习一个能够向未知目标域广泛推广的模式。 现有的 DG 方法通常依赖于共享多源数据, 用于通用模式培训。 然而, 如今大量数据分布在很多地方, 由于隐私政策无法共享, 特别是在金融和医疗等关键领域。 因此,在现实世界数据隐私保护和同时使用多源语义学学习与共享数据之间产生了两难境地。 在本文中, 我们调查一个分离的域常规化任务, 由分离的源数据集组成, 只有本地才能使用。 现有的 DG 方法通常依赖于共享的多源数据融合。 我们提出了一个新颖的解决方案, 叫做合作性拼凑和校准( CASAC), 以便完成这项挑战性任务。 要完全吸收多源的语义化信息, 同时避免不安全的数据融合, 我们首先通过在分层分层的域上训练的模型进行数据整合。 解决域变换导致的语义性变, 我们进一步设计跨层的语义校准校准校准, 将每个系统级化的校正 校正 校正 校正 。

0
下载
关闭预览

相关内容

【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
16+阅读 · 2020年12月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
5+阅读 · 2018年2月28日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
5+阅读 · 2018年2月28日
Top
微信扫码咨询专知VIP会员