The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below.
翻译:在具有分析边界和阻塞边界条件的域中,考虑高波数 k 的时间- 调和 Maxwell 方程式。 正在开发一种波数明确的稳定性和规律性理论,将溶液分解成一个有一定的索博勒常规性的部分,该常规性统一控制在 k 和分析部分中。 使用这种常规性, 以 Nedelec 元素为基础的加勒金离异性半优化性, 以带有网状尺寸 h 的网状线上的定序元素为基础, 显示在 k 显性比例分辨率条件下, a) kh/ p 是足够小的, b) p/ ln k 是从下面捆绑起来的 。