This paper proposes a Newton-type method to solve numerically the eigenproblem of several diagonalizable matrices, which pairwise commute. A classical result states that these matrices are simultaneously diagonalizable. From a suitable system of equations associated to this problem, we construct a sequence that converges quadratically towards the solution. This construction is not based on the resolution of a linear system as is the case in the classical Newton method. Moreover, we provide a theoretical analysis of this construction and exhibit a condition to get a quadratic convergence. We also propose numerical experiments, which illustrate the theoretical results.
翻译:本文建议了一种牛顿型方法来从数字上解决数个可分解的矩阵的元问题,这些矩阵是双向通勤的。 典型的结果是这些矩阵同时可分解。 我们从与这一问题相关的一个适当的方程式系统中, 构建了一个从四进制到解决方案的序列。 这个构造不是以线性系统的分辨率为基础, 象古典牛顿法那样。 此外, 我们对这种构造提供了理论分析, 并展示了获得二次趋同的条件。 我们还提出了数字实验, 以说明理论结果 。