Unsupervised domain adaptation (DA) methods have focused on achieving maximal performance through aligning features from source and target domains without using labeled data in the target domain. Whereas, in the real-world scenario's it might be feasible to get labels for a small proportion of target data. In these scenarios, it is important to select maximally-informative samples to label and find an effective way to combine them with the existing knowledge from source data. Towards achieving this, we propose S$^3$VAADA which i) introduces a novel submodular criterion to select a maximally informative subset to label and ii) enhances a cluster-based DA procedure through novel improvements to effectively utilize all the available data for improving generalization on target. Our approach consistently outperforms the competing state-of-the-art approaches on datasets with varying degrees of domain shifts.
翻译:未经监督的域适应(DA)方法侧重于通过不使用目标域的标签数据而统一源域和目标域的特征,实现最大性能。在现实世界的情景中,为一小部分目标数据贴上标签可能是可行的。在这些情景中,必须选择最大程度的信息化样本来标签,并找到一种有效的方法将这些样本与源数据的现有知识结合起来。为了实现这一点,我们提议S$3$VAADA(美元3$VAAD),其中i)引入一个新颖的子模块标准,以选择标签中信息最丰富的子集。 (ii)通过创新的改进来加强基于组群的DA程序,以便有效利用所有可用数据来改进目标的概括化。我们的方法一贯优于不同程度的域变换数据集方面相互竞争的最新方法。