尽管健壮的深度学习中的现有工作都集中在基于像素级别的小型规范扰动,但这可能无法解决在多个实际设置中遇到的扰动。在许多此类情况下,尽管可能无法获得测试数据,但可能知道有关扰动类型(例如未知的旋转度)的广泛规范。我们考虑一种在看不见的测试域中预期具有鲁棒性的设置。但偏离了训练领域。虽然可能无法确切知道此偏差,但根据属性先验地指定了其广泛的特征。我们提出了一种对抗训练方法,该方法学习如何生成新样本,从而最大程度地将分类器暴露于属性空间,而无需访问来自测试域的数据。我们的对抗训练解决了最小-最大优化问题,通过优化内部最大化产生的对抗性扰动的损失,使内部最大化产生对抗性扰动,而外部最小化找到模型参数。我们证明了我们的方法在三种类型的自然扰动上的适用性-与对象相关的移动,几何变换和常见的图像破坏。我们的方法使深度神经网络能够抵抗各种自然扰动。我们通过展示在MNIST,CIFAR-10和CLEVR数据集的新变体上进行对抗训练而获得的深度神经网络的鲁棒性收益,从而证明了所提出方法的有效性。
https://www.zhuanzhi.ai/paper/636acb141a5e0aea86f5cb8e864aca56