Domain adaptation (DA) attempts to transfer the knowledge from a labeled source domain to an unlabeled target domain that follows different distribution from the source. To achieve this, DA methods include a source classification objective to extract the source knowledge and a domain alignment objective to diminish the domain shift, ensuring knowledge transfer. Typically, former DA methods adopt some weight hyper-parameters to linearly combine the training objectives to form an overall objective. However, the gradient directions of these objectives may conflict with each other due to domain shift. Under such circumstances, the linear optimization scheme might decrease the overall objective value at the expense of damaging one of the training objectives, leading to restricted solutions. In this paper, we rethink the optimization scheme for DA from a gradient-based perspective. We propose a Pareto Domain Adaptation (ParetoDA) approach to control the overall optimization direction, aiming to cooperatively optimize all training objectives. Specifically, to reach a desirable solution on the target domain, we design a surrogate loss mimicking target classification. To improve target-prediction accuracy to support the mimicking, we propose a target-prediction refining mechanism which exploits domain labels via Bayes' theorem. On the other hand, since prior knowledge of weighting schemes for objectives is often unavailable to guide optimization to approach the optimal solution on the target domain, we propose a dynamic preference mechanism to dynamically guide our cooperative optimization by the gradient of the surrogate loss on a held-out unlabeled target dataset. Extensive experiments on image classification and semantic segmentation benchmarks demonstrate the effectiveness of ParetoDA


翻译:域适应 (DA) 试图将知识从标签源域转移到与源的分布不同的未标签目标域。 为了实现这一点, DA 方法包括源分类目标, 以提取源知识, 和域调整目标, 以降低域转移, 确保知识转移。 通常, 前 DA 方法采用一些重量超参数, 将培训目标线性地结合起来, 形成一个总体目标。 但是, 这些目标的梯度方向可能因域转移而相互冲突。 在这种情况下, 线性优化计划可能会降低总体目标值, 以损害培训目标之一为代价, 导致限制性解决方案。 在本文件中, 我们从梯度角度重新思考DA的最优化方案。 我们提议采用Pareto Domain Adital(ParetoDA) 方法来控制总体优化方向, 目的是合作性地优化所有培训目标, 具体来说, 为了在目标域上达成理想的解决方案, 我们设计了一个不偏差的缩略目标性目标性目标分类分类。 为了支持缩略图, 我们提议一个目标性修正机制, 利用目标性定位改进机制, 将域域域域内标值标值标值比值定位, 通常通过 Bayerealn the sladeal develop ladeal lade the sreal view dal vial violviewdal viewdal viol viewdal viewdal viol view viol viewdal view des view view vial view violveal view view view viewdal viewdal view view viewdaldaldaldaldaldaldaldaldaldaldaldal vialdaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal viewdal viewdaldal vial vialdaldaldaldaldaldaldaldaldaldaldaldaldal vical 。

0
下载
关闭预览

相关内容

专知会员服务
80+阅读 · 2021年5月10日
专知会员服务
25+阅读 · 2021年4月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2022年2月8日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年5月10日
专知会员服务
25+阅读 · 2021年4月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员