It is widely known that convolutional neural networks (CNNs) are vulnerable to adversarial examples: images with imperceptible perturbations crafted to fool classifiers. However, interpretability of these perturbations is less explored in the literature. This work aims to better understand the roles of adversarial perturbations and provide visual explanations from pixel, image and network perspectives. We show that adversaries have a promotion-suppression effect (PSE) on neurons' activations and can be primarily categorized into three types: i) suppression-dominated perturbations that mainly reduce the classification score of the true label, ii) promotion-dominated perturbations that focus on boosting the confidence of the target label, and iii) balanced perturbations that play a dual role in suppression and promotion. We also provide image-level interpretability of adversarial examples. This links PSE of pixel-level perturbations to class-specific discriminative image regions localized by class activation mapping (Zhou et al. 2016). Further, we examine the adversarial effect through network dissection (Bau et al. 2017), which offers concept-level interpretability of hidden units. We show that there exists a tight connection between the units' sensitivity to adversarial attacks and their interpretability on semantic concepts. Lastly, we provide some new insights from our interpretation to improve the adversarial robustness of networks.


翻译:众所周知,共生神经网络(CNNs)容易受到对抗性例子的伤害:一)压制性占支配地位的扰动,主要是降低真实标签的分类分数,二)促进性占支配地位的扰动,重点是增强目标标签的信心,三)平衡的扰动,在压制和促进方面起着双重作用。我们还提供了对抗性实例的图像层面解释性。我们显示,对手对神经激活具有促动-压抑效应(PSE),主要可分为三类:(一) 压制性占支配地位,主要是降低真实标签的分类分数,二) 促进性占支配地位,重点是增强目标标签的信心,三) 平衡的扰动,在压制和促进方面起到双重作用。我们还提供了对抗性实例的图像层面解释性。这种将平级的扰动性影响与通过阶级激活性绘图(Zhou等人等人,2016年)。此外,我们研究了通过网络保密性分类产生的对抗性效应,即网络的敏感度(Bau et al.) 提供了对网络中隐藏性概念的某种解释性,即我们从对201717年的可变性概念的解读性,提供了我们之间存在的某种可理解性。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
专知会员服务
109+阅读 · 2020年3月12日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
195+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVPR 2018 笔记
计算机视觉战队
3+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
21+阅读 · 2018年2月14日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVPR 2018 笔记
计算机视觉战队
3+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员