Three different definitions of effective temperature -- $\mathcal{T}_{\rm k}$, $\mathcal{T}_{\rm i}$ and $\mathcal{T}_{\rm r}$ related to kinetic theory, system entropy and response theory, respectively -- are applied in the description of a non-equilibrium generalised massive Langevin model in contact with dichotomous noise. The differences between the definitions of $\mathcal{T}$ naturally wade out as the reservoir reaches its white-noise limit, approaching Gaussian features. The same framework is employed in its overdamped version as well, showing the loss of inertial contributions to the dynamics of the system also makes the three mentioned approaches for effective temperature equivalent.
翻译:有效温度的三个不同定义 -- -- $\mathcal{T ⁇ rm k}$, $\mathcal{T ⁇ rm i}$ 和$\mathcal{T ⁇ rm r}$ -- -- 分别与动能理论、系统变异和反应理论有关,在描述与二分噪声接触的非平衡大规模兰埃文模型时适用。当储油层达到白噪音极限,接近高斯特征时,美元自然流出值美元的定义存在差异。同样的框架也被用于其过于普及的版本,表明对系统动态的惯性贡献损失也使得所提到的有效温度当量的三种方法得以实现。