By exploiting the superiority of non-orthogonal multiple access (NOMA), NOMA-aided mobile edge computing (MEC) can provide scalable and low-latency computing services for the Internet of Things. However, given the prevalent stochasticity of wireless networks and sophisticated signal processing of NOMA, it is critical but challenging to design an efficient task offloading algorithm for NOMA-aided MEC, especially under a large number of devices. This paper presents an online algorithm that jointly optimizes offloading decisions and resource allocation to maximize the long-term system utility (i.e., a measure of throughput and fairness). Since the optimization variables are temporary coupled, we first apply Lyapunov technique to decouple the long-term stochastic optimization into a series of per-slot deterministic subproblems, which does not require any prior knowledge of network dynamics. Second, we propose to transform the non-convex per-slot subproblem of optimizing NOMA power allocation equivalently to a convex form by introducing a set of auxiliary variables, whereby the time-complexity is reduced from the exponential complexity to $\mathcal{O} (M^{3/2})$. The proposed algorithm is proved to be asymptotically optimal, even under partial knowledge of the device states at the base station. Simulation results validate the superiority of the proposed algorithm in terms of system utility, stability improvement, and the overhead reduction.
翻译:诺马辅助移动边缘计算( MEC) 利用非正统多重存取( NOMA) 的优越性, 诺马辅助移动边缘计算( MEC) 可以提供可缩放和低纬度的互联网信息计算服务。 然而, 鉴于无线网络和诺马的复杂信号处理普遍存在的随机性, 设计一个高效的任务卸载算法对于诺马辅助的MEC来说至关重要, 特别是在大量设备下。 本文展示了一种在线算法, 该算法可以联合优化卸载决定和资源分配, 以尽量扩大长期系统效用( 即衡量吞吐量和公平性 ) 。 由于优化变量是临时结合的, 我们首先应用Lyapunov 技术来将长期的透析优化转化为一系列的确定性子问题, 这不需要事先对网络动态有任何了解。 其次, 我们提议将优化诺马权力配置的非convex 的次质次质调整为等同形式, 引入一套辅助性变量, 使亚马萨基平平平平平平平平平平平平调的系统 。