We introduce dissipative solutions to the compressible Navier-Stokes system with potential temperature transport motivated by the concept of Young measures. We prove their global-in-time existence by means of convergence analysis of a mixed finite element-finite volume method. If a classical solution to the compressible Navier-Stokes system with potential temperature transport exists, we prove the strong convergence of numerical solutions. Our results hold for the full range of adiabatic indices including the physically relevant cases in which the existence of global-in-time weak solutions is open.
翻译:我们为压缩的纳维-斯托克斯系统引入了消散性解决方案,其潜在温度迁移受 " 年轻措施 " 概念的驱动。我们通过对混合的有限元素-无限体积方法进行趋同分析,证明了它们在全球的及时存在。如果对压缩的纳维-斯托克斯系统存在一种典型解决方案,并具有潜在的温度迁移,我们就证明了数字解决方案的高度趋同性。我们的结果支持了各种非对称性指数,包括存在全球-实时弱化解决方案的物理相关案例。