In countries where population census and sample survey data are limited, generating accurate subnational estimates of health and demographic indicators is challenging. Existing model-based geostatistical methods leverage covariate information and spatial smoothing to reduce the variability of estimates but often assume the survey design is ignorable, which may be inappropriate given the complex design of household surveys typically used in this context. On the other hand, small area estimation approaches common in the survey statistics literature do not incorporate both unit-level covariate information and spatial smoothing in a design-consistent way. We propose a new smoothed model-assisted estimator that accounts for survey design and leverages both unit-level covariates and spatial smoothing, bridging the survey statistics and model-based geostatistics perspectives. Under certain assumptions, the new estimator can be viewed as both design-consistent and model-consistent, offering potential benefits from both perspectives. We demonstrate our estimator's performance using both real and simulated data, comparing it with existing design-based and model-based estimators.
翻译:在人口普查和抽样调查数据有限的国家,国家以下一级对健康和人口指标的准确估计是具有挑战性的国家,现有基于模型的地理统计方法利用共同变化的信息和空间平滑来减少估计数的可变性,但往往认为调查设计是忽略不计的,鉴于这方面通常使用的住户调查设计复杂,这种设计可能不适当;另一方面,调查统计文献中常见的小面积估计方法没有以设计一致的方式既包括单位水平的共变信息,也包括空间平滑。我们提议一个新的平稳的模型辅助估算器,用于计算调查设计和利用单位水平的共变和空间平滑,弥补调查统计数据和基于模型的地理统计学观点。在某些假设下,新的估计器可被视为设计一致和模式一致,从两个角度都可能带来好处。我们用真实和模拟的数据来展示我们的估计器的性业绩,将其与现有的设计基数据和模型估算器进行比较。