项目名称: 考虑复杂环境影响的大跨度斜拉桥异常状态统计识别

项目编号: No.51308338

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 建筑科学

项目作者: 闵志华

作者单位: 上海师范大学

项目金额: 25万元

中文摘要: 基于长期健康监测数据提取的结构状态特征不仅取决于结构自身状态,还会受结构所处的复杂环境因素、测量噪声、分析误差等不确定性因素的影响。传统的基于确定论的异常状态识别方法难以取得满意的应用效果,因此本研究注重考虑复杂环境影响的大跨度斜拉桥异常状态统计识别方法。主要研究内容有:基于斜拉桥长期监测数据提取状态特征;结构状态特征的环境因素识别、影响机理分析及建模,解耦环境因素的影响效应;基于非参数序贯概率比检验对斜拉桥异常状态统计判别,并判别异常状态类型;基于拒绝概率估计方法对结构异常位置统计识别;基于贝叶斯统计和基准状态有限元模型的结构异常程度统计估计。本研究考虑各种不确定性因素的影响,提出有效的斜拉桥异常状态统计分析方法,以获得对斜拉桥异常状态准确的评估.

中文关键词: 环境影响;异常状态;结构健康监测;统计识别;大跨度斜拉桥

英文摘要: In the process of long-term health monitoring, structural condition features were not only affected by structural conditions, but also influenced by some random factors, such as complex environmental factors, measurement noise and analysis errors. The traditional structural abnormal condition assessment methods, which were based on deterministic theories, cannot apply in this condition. So a statistical identification method of abnormal conditions in long-span cable-stayed bridges considering complex environmental effects was proposed. At first, these structural condition features, were extracted from the monitoring data of long-span cable-stayed bridges. The major environmental factors, which significantly affected structural condition features, were identified and the influcing mechanism was analyzed. The analysis model of complex environmental factors effects was established and environmental effects were decoupled. After that, structural abnormal condition can be detected based on the non-parameters sequential probability ratio testing method. Meanwhile according to the monitoring data, such as extreme environmental factors and boundary condition, the type of structural abnormal condition can be correctly determined. Structural abnormal position can be identified based on the rejection probability estimat

英文关键词: environmental effects;abnormal condition;structural health monitoring;statistical identification;long-span cable-stayed bridge

成为VIP会员查看完整内容
0

相关内容

深度学习人脸特征点自动定位综述
专知会员服务
23+阅读 · 2021年12月1日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
24+阅读 · 2021年7月17日
专知会员服务
18+阅读 · 2021年6月10日
专知会员服务
36+阅读 · 2021年5月10日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
69+阅读 · 2020年6月10日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
38+阅读 · 2019年12月5日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
再严重的 Log4j2 漏洞也伤害不了Java?
InfoQ
0+阅读 · 2021年12月26日
再严重的 Log4j2 漏洞也伤害不了Java
AI前线
0+阅读 · 2021年12月14日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
数据资产化前瞻性研究白皮书
专知
2+阅读 · 2021年11月19日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
人脸检测与识别总结
计算机视觉战队
21+阅读 · 2017年11月29日
已删除
将门创投
12+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
One-Class Model for Fabric Defect Detection
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
深度学习人脸特征点自动定位综述
专知会员服务
23+阅读 · 2021年12月1日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
24+阅读 · 2021年7月17日
专知会员服务
18+阅读 · 2021年6月10日
专知会员服务
36+阅读 · 2021年5月10日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
69+阅读 · 2020年6月10日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
38+阅读 · 2019年12月5日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
再严重的 Log4j2 漏洞也伤害不了Java?
InfoQ
0+阅读 · 2021年12月26日
再严重的 Log4j2 漏洞也伤害不了Java
AI前线
0+阅读 · 2021年12月14日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
数据资产化前瞻性研究白皮书
专知
2+阅读 · 2021年11月19日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
人脸检测与识别总结
计算机视觉战队
21+阅读 · 2017年11月29日
已删除
将门创投
12+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员