The $n$-grid $E_n$ consists of $n$ equally spaced points in $[-1,1]$ including the endpoints $\pm 1$. The extremal polynomial $p_n^*$ is the polynomial that maximizes the uniform norm $\| p \|_{[-1,1]}$ among polynomials $p$ of degree $\leq \alpha n$ that are bounded by one on $E_n$. For every $\alpha \in (0,1)$, we determine the limit of $\frac{1}{n} \log \| p_n^*\|_{[-1,1]}$ as $n \to \infty$. The interest in this limit comes from a connection with an impossibility theorem on stable approximation on the $n$-grid.
翻译:$-grime $_n$n美元包含在$[1,1]美元中相等的空格点数,包括1美元的终点数$\ pm1美元。极端多元美元$_n<unk> $是将统一标准最大化的多元标准$% p[1,1]$p$p$p$_p$_p$_[1,1美元]美元,在以美元为单位的多元标准中,以美元为单位。对于每1美元(0,1美元)来说,我们确定美元/frac{1}\log$__p___n_[1,1}美元作为美元/美元。这一限制的利息来自无法在美元-gring上稳定近似值的标语。</s>